Porous cobalt(II)-imidazolate supramolecular isomeric frameworks with selective gas sorption property.
نویسندگان
چکیده
Two porous supramolecular isomeric frameworks show unique sorption properties, one with temperature dependent stepwise and hysteretic selective sorption of CO(2) while the other one shows gas uptake capacity for CO(2), N(2), H(2) and CH(4) at low temperature and selective sorption of CO(2) over N(2) around room temperature.
منابع مشابه
H2, N2, CO, and CO2 sorption properties of a series of robust sodalite-type microporous coordination polymers.
H2, N2, CO, and CO2 are readily incorporated in the porous, 3D sodalitic frameworks of coordination polymers of the [ML2]n type, with M = Pd(II) or Cu(II) and HL = 2-hydroxypyrimidine or 4-hydroxypyrimidine. The metal ion and ligand functionalization modulate their sorption properties, making these materials suitable for gas storage and separation purposes.
متن کاملMetal-organic frameworks of cobalt and nickel centers with carboxylate and pyridine functionality linkers: Thermal and physical properties; precursors for metal oxide nanoparticle preparation
This article provides an overview on preparation, design, crystal structure and properties of some metal-organic frameworks of carboxylate coordination polymers mixed with pyridine-functionality linkers prepared in our laboratory. The article covers coordination polymers in two- and three-dimensional supramolecular architectures. The reported coordination polyme...
متن کاملWhy Porous Materials Have Selective Adsorptions: A Rational Aspect from Electrodynamics.
Gas storage/separation is a typical application of porous materials such as metal organic frameworks (MOFs). The adsorption/separation behavior results from the host-guest and/or guest-guest interaction and equilibration (host, porous material; guest, adsorbates). Although the driving forces for gas adsorption have been investigated, a detailed picture of interactions between gas molecules and ...
متن کاملHydrogen storage in porous materials, current status and future challenges
Hydrogen storage in porous materials gained considerable interest, since in the past 15 years many new coordination polymers or framework materials have been synthesized, which show a permanent ultra-high porosity and an extremely large specific surface area [1-3]. Different classes of these novel highly porous structures, e.g., metal-organic frameworks (MOFs), zeolitic imidazolate frameworks (...
متن کاملCO(2) selective 1D double chain dipyridyl-porphyrin based porous coordination polymers.
Thermal reactions of MnCl(DPyP) (DPyP = 5,15-di(4-pyridyl)-10,20-diphenylporphyrin) as a metalloligand with Co(II) and Zn(II) ions in dimethylformamide led to neutral one-dimensional (1D) double chain dipyridyl-porphyrin-based porous coordination polymers (PCPs), Co3(DPyP)3·4DMF (I) and Zn3(DPyP)3·2DMF·4H2O (II). Both PCPs were structurally characterized by X-ray crystallography. Particularly, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical communications
دوره 47 17 شماره
صفحات -
تاریخ انتشار 2011